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On the basis of the well-known quantum logic and quantum probability a formal 
language of relativistic quantum physics is developed. This language incorporates 
quantum logical as well as relativistic restrictions. It is shown that relativity 
imposes serious restrictions on the validity regions of propositions in space-time. 
By an additional postulate this relativistic quantum logic can be made consistent. 
The results of this paper are derived exclusively within the formal quantum 
language; they are, however, in accordance with well-known facts of relativistic 
quantum physics in Hilbert space. 

1. INTRODUCTION 

In recent years a formal language of quantum physics has been 
developed, which may be considered as the object language with respect to a 
single quantum physical system and its properties. This language, often 
called quantum logic on account of the formal logic contained in it, is the 
most abstract schema of quantum physics which does not make use of 
algebraic and analytical techniques (Mittelstaedt, 1978; Stachow, 1981a). 
Algebraic representations of this quantum language are given by a lattice 
structure and a Baer*-semigroup, respectively (Stachow, 1981a; 1978d), 
which are well known from earlier algebraic investigations of quantum 
mechanics (Birkhoff and von Neumann, 1936; Foulis, 1960; Jauch, 1968). 
The realization of these abstract structures in Hilbert space lead to the usual 
formalism of nonrelativistic quantum theory (Stachow, 1981a; Jauch, 1968; 
Piron 1976). In this language a probability theory has been developed, 
which is based on the same single case semantics as the language and is thus 
also related to an individual system (Stachow, 1978b; 1979; 1981b). The 
algebraic representation of this quantum probability calculus leads to the 
well-known quantum probability theory (Jauch, 1974; Mittelstaedt, 1976a). 
The quantum language and its extension by the quantum probability 
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calculus allow for a realistic description of a quantum system, its prepara- 
tion, its properties, and its probabilities. 

In the present paper this quantum language (Q language) and quantum 
probability is generalized for the case of relativistic space-time. This formal 
language of relativistic quantum physics is obtained here by the additional 
restrictive postulate, that the quantum physical observer operates only in 
local regions of space-time and uses only local concepts for the construction 
of his language (Section 2). In this way all assumptions can be avoided 
which would lead to the Newtonian space-time. Moreover, the local point of 
view makes it possible to develop the Q language in the framework of the 
Minkowskian space-time as well as in Riemannian space-time. In this way 
one could presumably perform a project which was first formulated by 
Finkelstein: The transition from classical logic to quantum logic should be 
replaced by transition to a less rigid structure which depends on the 
respective metric in space-time (Finkelstein, 1969). Here, however, we will 
restrict our investigations to the homogeneous space-time of special relativ- 
ity. 

In Q language the accumulation of knowledge about a system is 
described such that a certain conception of measuring processes is tacitly 
used. In Section 4 this measuring process is made explicit exclusively in 
terms of Q language and without any recourse to Hilbert space quantum 
physics. For commensurable propositions an important theorem can be 
proved which in Hilbert space quantum physics corresponds to a well-known 
theorem due to Liiders (1951) and Schlieder (1968). Here, however, the 
theorem is proved exclusively by means of Q language and quantum 
probability. 

On the basis of this result the restrictions can be formulated which 
must be imposed on Q language in relativistic space-time. Here the validity 
of propositions proved by measurements is not only restricted to some time 
intervals (as in Newtonian space-time) but restricted to certain validity 
regions in space-time. Furthermore, the limitations of signals due to the 
light-cone structure of space-time become important if propositions are 
proved at points with spacelike distance. Again it should be emphasized that 
all these restrictions of the relativistic Q language are derived here exclu- 
sively within the framework of this language. In terms of Hilbert space 
quantum physics, analogous investigations concerning states and operators 
have been carried out recently by Schlieder (1968). However, since the 
results of the present paper had to be obtained without any recourse to 
Hilbert space mathematics, the investigations mentioned were only able to 
serve as guide lines. 

It is not obvious that the relativistic quantum language which is 
obtained in this way by imposing several restrictions on the well-established 
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Q language is not self-contradictory. In fact, it is shown here (Section 6) 
that an additional consistency postulate (C postulate) must be demanded, if 
the following requirements are to be fulfilled: The realistic interpretation of 
the history of a single system should be compatible with the relativistic Q 
language, and the quantum physical long-range correlations should not 
violate relativistic causality. These results, which are summarized in the LC 
theorem (Section 6), again correspond to well-known requirements and 
theorems of Hilbert-space quantum physics, e.g., the C postulate corre- 
sponds to the locality condition of quantum field theory (cf., e.g., Streater 
and Wightman, 1964). However, it seems to be noteworthy, that all results 
of the present paper could be derived within the abstract framework of 
relativistic quantum language, and are thus generally relevant irrespective of 
the particular mathematical formulation of the physical theory. 

2. THE OBSERVER IN QUANTUM PHYSICS AND 
RELATIVITY 

It is the goal of this paper to develop the basic concepts of a formal 
language of relativistic quantum physics. If the various terms of this 
language are introduced operationally, the physical conditions under which 
measuring results can be obtained become important. These conditions can 
adequately be expressed as restrictions which must be imposed on the 
observer. In this sense it has been emphasized by Einstein for the domain of 
relativistic physics, and by Bohr for the domain of quantum physics, that 
the observer is an inevitable element of any description of nature. In the 
present paper the observer is considered at the same time as speaker of the 
scientific language of physics, whose possibilities of investigating properties 
of a physical system belong to the preconditions of the respective language. 
Hence in order to construct a language for quantum physics and relativity 
we first consider separately the quantum physical observer and the relativis- 
tic observer and try to combine the possibilities of these two observers by 
introducing the universal observer. This universal observer will then be the 
speaker of the language of relativistic quantum physics, which is investi- 
gated in the following sections of this paper. 

The Quantum Physical Observer. We consider a quantum physical 
system S, i.e., an elementary particle, a nucleus, an atom, etc. The prepara- 
tion of the system, its contingent properties, and the temporal sequence of 
measurements are described by a quantum physical observer BQ. According 
to Bohr it is essential that this observer--considered as a physical object-- 
has macroscopic dimensions. He is equipped with macroscopic instruments 
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for the preparation of S and for the measurement of its contingent proper- 
ties. For the description of the preparation, the history, and the present state 
of the system S in question, the observer BQ makes use of a language S 0 
which will be called the language of quantum physics (Mittelstaedt, 1978; 
Stachow, 1981a). Since the mutual commensurability of two arbitrary 
properties of S cannot generally be guaranteed, in the language the simulta- 
neous decidability of two propositions is not generally presupposed but 
subject to a testing procedure which must be performed in every single case. 

The elementary propositions of the language S 0 are of the form a(S, t') 
and state that the system S has at the time t '  a property E a. The proof of 
this statement has to be performed by a quantum physical measuring 
process which makes use of a macroscopic measuring device. It is assumed 
in this description that the observer BQ and its measuring apparatus operate 
in a finite region R of space-time. However, it is also assumed that the 
proposition a(S, t') gives a correct description of S for all points (x k, t) of 
space-time with t/> t'. Consequently a sequence a(S, t'), b(S, t"), c(S, t'") 
with t ' <  t " <  t '" describes the history of S for space-time points (x k, t) with 
t ' ~  < t < t", t"<~ t < t '", t ' " ~  < t, respectively. Hence by means of the language 
SQ the observer B o describes the state and the history of S within the 
framework of the nonrelativistic, Newtonian space-time. 

The Relativistic Observer. We consider a macroscopic physical system 
Z in the sense of classical relativistic physics, i.e., a macroscopic body, an 
electromagnetic field, etc. A system of this kind will be observed and 
described by an observer BR, who operates in a finite region R of space-time 
and who is equipped with a material inertial basis, with clocks and measur- 
ing rods. This relativistic observer B R makes use of space-time coordinates 
KB(x, t), which are at rest with respect to the material reference basis of B R 
and which are chosen such that force-free test bodies of a given ensemble 
F = (Fi} ~ move uniformly on straight lines. Statements of the observer B R 
about the properties of the physical system Y. at a certain space-time point 
(x, t) are thus dependent on the respective coordinate system KB(x, t). 
Hence the particular system K B of coordinates belongs to the constituents of 
the language S~ B) of the relativistic observer B R. 

Different observers B R, B~ who are in relative motion to each other 
make use of different coordinate systems KB(x, t), Ke,(x' ,  t') . . . .  and of 
different languages $~B), SCR B') . . . . .  The transformations between coordinate 
systems of this kind are given by special linear functions of the space-time 
coordinates. The requirement that not only the uniformity and rectilinearity 
of the motion of the elements F~ of F be preserved by this transformation, 
but also the temporal order of successive space-time events of Fi, leads to 
the generalized Lorentz transformation A(voo ), which still contains an 
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arbitrary constant voo. The Lorentz transformation A(c) with voo = c is then 
obtained by the additional postulate that also the propagation of light has 
the same form for all observers (Levi-Leblond, 1976; Mittelstaedt, 1976/80; 
Pfarr, 1983). 

Series of causally connected space-time events ~{~1, ~2 . . . .  } are called 
signals (Mittelstaedt, 1976/80, p. 77). If the temporal order of two succes- 
sive events (et, e2) is invariant under Lorentz transformations, these events 
have a timelike distance and thus the velocity between ej and e 2 is always 
v(e t, e2)~< c. It is obvious that signals which consist of events of some I" i and 
light signals have this property. For other kinds of signals it does not follow 
from this derivation of the Lorentz transformation that they are propagated 
with v,, ~< c. However it is generally accepted as a principle of relativistic 
physics that signals of any kind cannot proceed faster than light. This 
principle, which is often called Einstein causality, will be assumed to be valid 
for relativistic observers through this paper. 

The Universal Observer. A quantum physical observer BQ performs 
measurements with macroscopic instruments in a macroscopic region R of 
space-time. In his language SQ he is subject to the restrictions which come 
from the possible mutual incommensurability of quantum physical proposi- 
tions. Since the region R of space-time is not only macroscopic but also 
finite and local with respect to relativistic space-time dimensions, the 
observer BQ may be considered at the same time as a relativistic observer 
B R. As a relativistic observer he works with operationally defined coordinate 
systems KB(xk, t) and is thus subject to the relativistic restrictions of 
space-time. In particular the exchange of information with other observers is 
restricted by the principle of Einstein causality, i.e., by the limited velocity of 
all signals.t 

A quantum physical observer who at the same time is a relativistic 
observer will be called here a universal observer B U. The universal observer 
is macroscopic from the quantum physical point of view and local in the 
sense of relativistic space-time. The region R of space-time in which his 
measurements are performed is large compared to atomic distances but 
small compared with light years, i.e., it has the dimensions of a laboratory. 
The universal observer is both subject to the quantum-mechanical and to 
the relativistic restrictions. He has to take into account possible incom- 
mensurabilities as Well as the question as to whether the four-dimensional 

I Here the principle of Einstein causality is--according to the previous section--considered as 
a restriction which refers to classical relativistic processes such as the propagation of light. 
Whether also quantum physical processes are restricted by this principle is for the present an 
open question, which will be investigated in Section 6 of this paper. 
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distance of two events is spacelike or timelike. The language of the universal 
observer will be called the language SRQ of relativistic quantum physics. 

In the present paper the space-time manifold will be assumed to be a 
Minkowskian space-time 9]L with the metric tensor ~7~,, = ~u,," 
{ + 1, - 1, - 1, - 1 }. Hence we consider quantum physics within the frame- 
work of the space-time of special relativity. The present approach could, 
however, presumably be generalized also for the Riemannian space-time of 
general relativity, since all considerations of this paper are based on the 
local point of view, which deals with a local and inertial observer Bu, who 
uses a local Q language and a comoving local inertial coordinate system. 
Hence by convenient generalization of the formal derivation of this paper, 
gravitational fields could also be taken into account. 

3. THE FORMAL LANGUAGE 

In this section we briefly develop the formal language SQ of quantum 
physics (Q language) which is used by a well-defined observer B u. Here we 
are interested mainly in the formulation of a language of physics which 
takes into account the restrictions which come from the possible incom- 
mensurability of quantum physical propositions. The restrictions which 
must be imposed on the language on account of relativistic physics are 
considered here only as far as the local character of the language is 
emphasized and the observer B U is considered as being located in a 
well-defined space-time region. The more important relativistic restrictions 
which come from space-time validity regions of propositions and from 
Einstein causality will be considered in Sections 5 and 6. 

In order to constitute the object quantum language SQ we begin with a 
quantum physical system S (atom, nucleus, elementary particle), the proper- 
ties of which can be tested experimentally by the observer B u. Propositions 
A, B .... about this system S which can be proved or disproved by measur- 
ing processes will be called elementary propositions. Since the truth or falsity 
of elementary propositions is determined by a well-defined proof procedure, 
these propositions are called proof-definite. Moreover we will assume that 
elementary propositions are value-definite, i.e., there always exists an experi- 
mental testing procedure which decides between truth and falsity of the 
respective propositions. According to the considerations of the previous 
section the testing processes are performed by B u within a finite region R of 
space-time. Hence we consider only those elementary propositions which 
are proof-definite in the restricted sense that the proof processes are carried 
out in this provability region R of B u. The set of these local elementary 
propositions is denoted here by Se(R). 
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TABLEI. 

Connective Possibility of attack Possibility of defence 

A n B 1?,2? A, B 
A A B 1?,2? A, B 

k(A, B)? k(A, B)! 
AVB ? A.B 

ff-(A,B) 
A~B A B 

k(A, B)? k(A, B)! 
~A A 

In quantum physics the simultaneous testability of two propositions 
A, B ~ Se(R ) is not guaranteed, except when the propositions A and B are 
commensurable. In order to incorporate the possibility of pairs of incom- 
mensurable propositions into the formal language, we introduce "availabil- 
ity propositions" k(A, B) (commensurability) and/~(A, b) (incommensura- 
bility) which can be tested by convenient series of measurements 
(Mittelstaedt, 1978; Stachow, 1981 a). In particular k(A, B) is considered to 
be true iff A and B can be tested in arbitrary sequence without thereby 
influencing the outcome of the respective trials. In the same way as 
elementary propositions, availability propositions also are tested by material 
processes within the local provability region R of B u. Since elementary and 
availability propositions are tested by material processes in R, we will refer 
to these kinds of propositions as local material propositions. Starting from 
the set of material propositions we can further extend the scientific language 
by incorporating sequential and logical connectives. The connectives A R B 
(A and then B), A A B (A and B), A V B (A or B), A --, B (ifA then B) and 
-~A (not A) will be defined by the possibilities of attack and defence of 
these compound propositions within the material dialogue game D,, 
(Mittelstaedt, 1978; Stachow, 1981a). The attack and defence scheme reads 
as shown in Table I. In this table we have denoted by k(A,B)? the 
challenge to prove k(A, B) and by k(A, B)! the successful proof of k(A, B). 

The meaning of this attack and defence scheme can best be illustrated 
by a proof tree (Stachow, 1980; 1981a), which represents the temporal 
sequence (from left to right) of successive experimental tests. (The temporal 
order corresponds to the rest frame of B u). For A A B, e.g., one obtains the 
proof tree shown in Figure I. 2 

At each branching point, one of the material propositions A, B, k(A, B) 
is tested. There is only one successful branch and three branches without 
success. We have assumed here that before the proof procedure the system S 

2The representation by proof trees makes use of the value definiteness of availability proposi- 
tions which can be justified in some way (cf. Mittelstaedt and Stachow, 1978). 
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Fig. 1. Proof tree for A/k B. 

k (A,B~.. 

was prepared such that the proposition W was true, which is denoted by 
S(W). This initial proposition W is called here the preparation. 

The set of material propositions can now be extended by incorporating 
arbitrary interactions of the connectives and availability propositions. In 
this way one arrives at the set SQ = {$e; M,/k, V, --, ,~,  k( , ), k( , )} of 
propositions, which is called here the Q language (Mittelstaedt, 1978; 
Stachow, 1981a). The proof procedures for propositions A E SQ are sum- 
marized in the material dialogue game D,, (Mittelstaedt, 1978; Stachow, 
1981a). If a proposition A can be proved in the system S with preparation 
W by means of a D,,, dialog we write S(W)F D.A and call A " t rue  in S( W)." 
If the truth of A does not depend on the particular system S, but only on its 
preparation IV, we write WFD.A and call A " t rue  with respect to IF." Since 
the truth of a proposition A ESQ must be demonstrated by a material 
dialogue, these propositions are called dialogue-definite. A material dialogue 
consists of a series of material proofs which are performed according to the 
dialogue rules by the participants of the dialogue (Mittelstaedt, 1978; 
Stachow, 1981a). Hence in the same way as for material propositions the 
dialogic proof for propositions A E S e must be performed within the prov- 
ability region R of B v. The set SQ of propositions which are dialog-definite 
in R thus constitute the local Q language, which we denote by 50(R).3 

On the basis of the material dialogue game two kinds of equivalence 
relations between propositions A E S 0 can be defined which will be briefly 
mentioned (cf. Stachow, 1981a, p. 272). Two propositions A and B are 
dialog equivalent, denoted by A =-- B, if in each dialog in which one of the 
two propositions occurs it may be replaced by the other one without thereby 
influencing the possibilities of success in the dialogue. On the other hand 
two propositions A and B are value equivalent, denoted by A = B, if in each 
dialogue in which one of these propositions is asserted, it may be replaced 
by the other one, such that the possibilities of success in the subdialogues 
about A and B are the same. 

3By introducing convenient equivalence classes of propositions, one obtains the 
Lindenbaum-Tarski algebra of S o (Stachow, 1981a). In Hilbert space formalism this algebra 
is realized by a subalgebra of the algebra of local observables in R (Stachow, 1981a; Schlieder, 
1971). 
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Once the language 5Q has been established, one can define a probabil- 
ity concept on the basis of this language (Stachow, 1978b; 1979; 1981b). For 
a system S with the preparation W (W ~ SQ) we first consider the condi- 
tional probability p<w)(A) E [0, 1] for the A outcome of an A trial, where 
A E SQ is a material proposition. In the same way as the elements of the 
language SQ, the conditional probability p< w)(A) of material propositions A 
is related to an individual system S(W) and considered as a property of its 
initial preparation W. However, the experimental test of a probability 
proposition P(w)(A) must be performed by estimating the relative frequency 
of A outcomes of a large number of A trials in systems S(W) with 
equivalent preparations W. 4 

The probabilities of compound propositions A ~ gQ which contain a 
finite number of connectives can then be obtained from the proof tree for A 
with the initial preparation W. If the probability for a successful branch bi 
in this proof tree is denoted by p(w)(b~(A)) the probability for A can be 
expressed by 

p<w)(A) = ~,p(w)(bi(A)) (1) 

Furthermore by means of the material dialogue game one finds the relation 

p(w)( A ~ B) = p(w)( A)P(wnA)( B ) (2) 

The totality of recoursive formulas, which allow one to reduce the probabil- 
ity of a compound proposition A to the a priori probabilities of the material 
propositions mi(A ) contained in A, can be summarized in a probability 
calculus for conditional probabilities (Stachow, 1978b; 1979; 1981b), the 
rules of which can be obtained all together from the material dialogue game. 
This calculus 62 C can be found in Stachow (1981b) and will not be presented 
here. Some applications of this calculus will be discussed in the next section. 

Finally it should be mentioned that analogous to propositions A ~ SQ 
also probabilities p<w)(A)~ [0, 1] must be measured in the provability 
region R of the local language considered. Hence we are dealing here more 
precisely with local probability propositions, the verification of which must 
be performed in a finite region R of space-time. 

4The question whether probabilities can be measured only by means of relative frequencies of 
an ensemble of systems, or whether there is also a method of direct estimation at a single 
system is investigated in Koppe and Zapp (1983). (Cf. also note 6.) 
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4. THE MEASURING PROCESS 

In this section we will briefly discuss the concept of measurement 
which is used implicitly in the language ~O of quantum physics. It will turn 
out that we are dealing here with ideal measurements of the first kind, 
which are of the Lfiders (1951) type. According to the previous section, for a 
physical system S which is prepared such that W E SQ is true, we write 
S=S(W)  and call W the preparation of S. For the material proof of 
another proposition A, a measuring process for A must be performed, which 
will be assumed to have two possible outcomes, .4 and ~A such that after 
the measuring process for the system S the propositions W V1A or W VI-~A, 
respectively, are true. If the conditional probabilities for A and 9.4 are 
given by p(w)(A) and p(w)(-M), respectively, in a first step (I) of the 
measuring process one obtains an ensemble of possible outcomes (proposi- 
tions) and their respective probabilities F(W; A): = {P(w)(.4i), W R Ai) ~ 
which represents the observer's knowledge after this step (I). In a second 
step (II) this ensemble F(W; A) can be reduced simply by reading to one of 
the possible components W R.4~, i.e., the measuring process reads 
(Mittelstaedt, 1976b) 

(I) (II) 
W ~ F ( W ; A )  ~ W ~ A i  

It is assumed here that these two steps of the measuring process 
correspond to the following description in terms of Hilbert space: If W 
corresponds to the projection operator Pw, WrIA corresponds to the 
component PAPwPA/Tr(PAPw) of the Lfiders mixture (W; A ) =  
EiPAPwPm. The ensemble F(W; .4) corresponds to an assemblage of com- 
ponents of this kind and their probabilities, which is statistical equivalent to 
the Ltiders mixture (W; .4). Hence the ensemble F(W; .4) will be called a 
Li~ders ensemble. It should be noted that in step (I) of the measuring process 
the mentioned assemblage of state operators and not the equivalent mixture 
(W; .4) is produced. This fact can be explained by the macroscopic dimen- 
sions of the measuring instruments. Obviously there are no problems in 
applying the ignorance interpretation to the ensemble F(W;.4) (Ochs, 
1981). 

Here we are not dealing with Hilbert-space quantum mechanics. In- 
stead we have rather to describe the measuring process solely in terms of the 
quantum language SQ. In this terminology the measuring process [for A at 
S(W)] corresponds to the proof tree in Figure 2, i.e., in step (I) we obtain 
W n(A V~A) which in step (II) is reduced to W • A (or W R-~A). Hence 
the Ltiders ensemble F(W;A) is adequately described by W R ( A V ~ A )  
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WnA 

Wn'~A 

Fig. 2. Proof tree for A. 

and its A component, say, by W I-7 A. Consequently, the measuring process 
reads in terms of Q language 

O) ---, W [7 A i W--, W n ( A V ~ A )  (m 

The two branches of the proof tree have the a priori probabilities 
p(w)(A)  and p(w>(~A), respectively, where A is considered here as an 
elementary proposition. For the compound proposition A V ~  A, i.e., for the 
sequential propositon W m (A V ~ A), both branches are successful processes. 
Since according to the quantum probability calculus (Stachow, 1981b) the 
probability for a compound proposition is given by the sum (1) over the a 
priori probabilities of successful branches we have 

p<.:>(A v A) = p<.:>(A) + = I (3) 

We now consider the more complicated measuring process of the subse- 
quent measurements of two propositions A and B. If we are interested in the 
outcome B, we have to investigate the successful processes for the sequence 
W m(A V ~ A ) n B .  In the proof tree shown in Figure 3, for subsequent 
measurements of A and B, there are two branches of success for B which 
correspond to the sequential propositions A V1 B and -~A I-1 B, respectively. 
Hence the probability for (A V ~ A)I-7 B reads 

p(w)((AV~A)~B)--p(w)(ANB)+p(w>(~AmB) (4) 

The probabilities of the two branches A 17 B and -~A I-7 B can be further 

Fig. 3. Proof tree for (A v--,A)rq B. 
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decomposed into (cf. Stachow, 1979; 1981b) 

p<w>( A I-1 B) = P<w>( A )p<wn A>(B) 

p(w>(-"A 17 B) = p(w>(-"A ) p<wn~A>( B ) (s) 

This measuring program can be compared with the direct measurement 
of B at S(W). It is obvious that the sequential propositions W ~ B  and 
W~(A V - " A ) ~  B are not dialogue equivalent, even if A and B are com- 
mensurable. Since W and A are not assumed to be commensurable, the 
experimental test of A may result in changes of S(W) which have some 
influence on the result of a succeeding B test. Hence the direct test of B at 
S(W) may lead to a different result. However, it can be shown that in spite 
of this difference of the propositions W ~  B and W IT(A V-~A)~ B the 
probabilities for B and (A V-,A)17 B with respect to W are equal, provided 
the propositions A and B are commensurable. This result, which is im- 
portant for the investigations of the next section, can be demonstrated in 
the following way. 

The probability of the elementary proposition B at S(W) is given by 
the a priori probability p(w>(B). On the other hand the probability for 
(A V-"A)rq B at S(W) follows from (4) and (5) 

p(w>(( A V-"A)n B) = p<w>( A)p<wnA>( B )+ p<w>(-"A)p(wn~A>( B ) 

and is illustrated by the proof tree in Figure 3. If A and B are commensur- 
able, i.e., ~k(A, B) then in every single branch of this proof tree the 
temporal order in which the proofs of A and B are performed is irrelevant 
for the relative frequency of this branch. Replacing the two branches of 
success WVl(-"A~B)and W71(A71B)by W71(B~A)and W71(BN~A) 
one gets the new proof tree shown in Figure 4, with probabilities 

p<w>(-"A 71 B) = P<w>(B VI-"A) = p<w>(B)p(wn s>(-"A) 

p<w>( A 71 B) = p<w>( B I7 A) = p<w>( B )p<wn.>( A) 

W : / ~ 1  

Fig. 4. Proof tree for B n ( A V-~ A). 
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Hence we obtain 

p(w)(( A V~A)V1 B) = p(w)( B I-1 A)+ p(w)( B r-l~A) 

= P(w)(B)( P(wn e)(A) + P(wn .)(--, A )) 

=p(w)(B)p(wnB)(AV--,A)=p(w)(B ) (6) 

which is the desired result. 
According to the probability calculus mentioned (Stachow, 1981b), the 

left-hand side of (6) can be written as 

p(w){ ( A V~A)r-i B} = P(wn~A v ~A))( B )/p(w)( A V~A) 

Since p(w}(A V--~A)= 1, we finally arrive at the following result: 

L Theorem. If A and B are commensurable, we have 

(7) 

In this formulation the theorem states that the probability of B with respect 
to preparation W is equal to the probability of B with respect to the Liaders 
ensemble F(W; A), provided A and B are commensurable. 

In Hilbert space quantum theory the physical content of the L theorem 
(7) is a well-known result, which was first demonstrated by Liaders (1951). 
However, for the present investigation it is important that the theorem can 
be proved solely by means of Q language and the corresponding probability 
calculus. 

5. SPACE-TIME REGIONS 

We consider an individual physical system S with the preparation W, 
and properties A, B .... which can be tested at S = S(W). The preparation 
W as well as other measurable propositions A, B .... are assumed here to be 
time independent, i.e., in terms of quantum theory we use the Heisenberg 
representation for the elements of the language go" In the framework of 
relativistic, quantum theory, these Heisenberg propositions are first of all 
related to the entire four-dimensional space-time 91L. On the other hand the 
measuring processes for propositions A, B .... ~ gQ are performed in finite 
regions of space-time and hence the validity of a given proposition A must 
be restricted to a certain validity region M =  Rv(A ) of space-time ~]L. In 
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order to indicate the validity region of a proposition A in the following we 
write A ( M )  with M =  R~(A). 

The historical development of a system S is thus determined by the 
succession of measuring processes for several propositions which are per- 
formed at the system. The preparation W is the result of a physical process 
which has been performed in the early part of the system. Its validity region 
wilt be denoted by M 0. If we consider the measurement of the proposition 
A, which is performed at point x* in space-time, and which has the outcome 
A, the history of S reads 

( W( Mo), W VI A( M, )  } 

where the validity regions M 0 and M I are such that M 0 O M t = ~3/~ and 
M o fq MI = 0 .  This description of the history of S corresponds to the A 
branch of the proof tree shown in Figure 5, where the branching point 
marks the beginning of a new section in the history of the system. The 
vertical line o w indicates the hypersurface which separates the regions M 0 
and Mt before and after the measurement. 

In Newtonian space-time the hypersurface o w is given by x 0 = x~ (with 
x o = ct and thus the validity regions are 

m o =  (x:  Xo<~X~) }, M~= (x:  x o > x 3 }  

Since this separation is Galilei invariant, it is relevant for all observers Bt; in 
x* irrespective of their velocity. However, in Minkowskian space-time of 
special relativity this definition of a w can no longer be used, since o w is not 
invariant under homogeneous Lorentz transformations and thus the validity 
regions would depend on the velocity of the respective observer in x*. 
Instead one has to define here a Lorentz-invariant hypersurface, which 
separates M o and MI in a convenient way. There are two possible choices 
for a Lorentz-invariant o w, the forward light cone L~+)(x *) in x* and the 
backward light cone Lr respectively. Here we define o w by the 
backward light cone L( - ) ( x  *) since otherwise long-range correlations be- 
tween the measuring event x* and points y* with spacelike distances would 
be excluded. The existence of nonlocal correlations in EPR-like situations, 

W ~ WnA 

Mo . . . . . .  
Wn~A 

Fig. 5. Proof tree for A and validity regions. 
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MI i I MI 

x • 

Fig. 6. Validity regions in Newtonian and Minkowskian space-time. 

however, seems to be a very important  feature of quantum physics even if 
presently there is not yet direct experimental evidence for it. Hence the 
possibility of such correlations should in any case be incorporated into the 
scientific language. For this reason, we define the relativistic hypersurface 
o w by x 0 = x~ - Ix k - x~[. (Figure 6). 

If once this definition of the validity regions is accepted, we can 
investigate a more complicated measuring program which consists of two 
subsequent measurements of A and B and space-time points x* and y*. 
"Subsequent" means in the relativistic context that x* and y* are points on 
the timelike world line of the observer B u with x~ < y~'. The history of S is 
then described by a branch in the proof tree for A and B, shown in Figure 7, 
e.g., by W I-7 A I-7 B and reads 

(W(Mo), W ffl A( M,),(W Iq A)Iq B(M2) } 

Since the measuring processes are performed at the points x* and y*, the 
hypersurfaces o w and o A which separate the regions M 0, M I, M 2 are given 
by L(-)(x *) and L(-)(y*), respectively. The corresponding validity regions 
M o, M t, and M 2 are shown in Figure 8 and are given by 

Mo=J(-)(x*), M,=J(-)(y*)7~ J(-)(x*), M2= J(-)(y*) 

where we have denoted by J(-)(x) the causal past of x, i.e., the union of the 
backward light cone L(-)(x) and its interior, and by J(-)(x) the comple- 

M0 

A 

Fig. 7. Proof tree for A I-1 B and validity regions. 
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l / world hoe 
t I = /  of BU 

• 

Fig. 8. Validity regions for points x* and y* with timelike distance. 

ment of this set. Obviously they fulfill the relations MoUMIUM 2 = ~~1~, 
M, VIMk=~ for i :r k. 

A division of the Minkowskian space into distinct regions M i which are 
determined by measuring processes, will be called a measuring chart or M 
chart of 2-)Fr The definition of M charts, which is given here for two event 
points x* and y* with timelike distances, can easily be extended to more 
than two events and to events with spacelike distances. An example with 
spacelike points x* and y* is shown in Figure 9. 

The description of the history of a system S(W) is more complicated if 
the measurements of A and B are performed at points x* and y* with a 
spacelike distance. In this case it is no longer possible to think of an 
observer B u, who describes the history of S ( W )  and who performs the 
measurements in x* and y*. Instead we have clearly to distinguish between 
the measuring instruments at x* and y*, which completely perform the 
measurements of A and B, respectively, and the observer B u, who gives a 
description of the history of S ( W )  on the basis of the results of these 
measurements. It is obvious that the information about these measuring 
results must be transmitted from x* and y* to the observer's space-time 
point ~(Bu) by convenient signals. Since all kinds of classical signals, which 
can be received by B u, are restricted by the principle of Einstein causality, 
the space-time point ( (Bu)  of the observer becomes important for the 
description of the history of the system S(W) .  

We assume that there is a well-defined measuring program such that 
proposition A is measured at x* and B at y*. The measurements are 
completely performed by the instruments, i.e., both steps of the measuring 
process are carried through and the result which is obtained in step (II) by 
reading is registered in some way. Hence a distant observer B u may either 
be informed about the final result of the measurement, or his knowledge 
about the outcome is restricted merely by subjective ignorance. Here we 
assume that the observer obtains all information which (in the relativistic 
sense) is available to him. 
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/ Y 

x 

Fig. 9. Validity regions and domains D i of information for points x* and y* with spacelike 
distance. 

According to this measuring program, there are four sections 
M o, M~, M 2, M 3 of space-time, which determine the validity regions of the 
objectively decided propositions A and B (Figure 9). Here we have 

M o = J ( - ) ( x * )  N J  ( - ) ( y * ) ,  

M 2 = J ( - )Cx*)  n J ( - ) C y * ) ,  

M,  = J ( - ) ( x * )  n J<- ) (y*)  

M 3 = J { - ) ( x * )  N J ( - ) ( y * )  

where the complement of J(-) is denoted by J(-) .  However, the description 
of the history of the system S, which is given by the observer B v, depends 
not only on the objective situation (in the quantum physical sense) which is 
described by the given M chart, but also on the information about this 
objective situation, which is available (in the relativistic sense) to the 
observer B U at the space-time point ~(Bu) .  In this sense the history of the 
system S depends on the space-time position of the observer B U. 

If once the points x* and y* are given and if, say, x~ < Y0*, then we can 
distinguish four distinct domains DI, D 2, D 3, D 4 of the Minkowski space 
~31L, which correspond to different possibilities of information, Figure 9. In 
the present example, we have 

D, = Jt+)Cx*) n J(+)Cy*) , D 2 = J(+)(x*)("l  J t+)Cy*) 

D,= J(+>(x*) n g(+)(y*), D4=a(+)(x*)na<+'(y*) 

where we have denoted by J(+)(x*)  the causal future of x*, i.e., the union of 
the forward light cone L(+)(x *) and its interior. For the description of the 
history of the system S ( W )  it is important in which of these domains D i the 
observer's space-time point ~(B U) is located. Even if the objectively decided 
result of a measurement of A, say, is not known to B U, he knows that the 
measuring process has been completely performed at x* and that a Liiders 
ensemble W • (A V ~ A) has been generated. 
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Hence in the different domains D r the observer will give the following 
alternate descriptions of the history of the system S in the region 343: 

~(B,,)~ Dr: { W r q ( A  

D2: {W r-] A k 

D3: {W I--I( A 

/)4: {W ~ A k 

Obviously for the other regions M I 
descriptions can be given. 

V.~A)Iq( B V--,B} 

I-I(B V~B)} 

v- ,a )n  B~} 

n B~} 

and M 2 similar sets of alternate 

6. THE CONSISTENCY OF THE LANGUAGE 

An observer B u at the space-time point ~(B,,) describes the system S 
and its history by means of the quantum language SRQ and a coordinate 
system K B, the origin of which is at rest relative to B u. The restrictions 
which must be imposed on this quantum language SRQ due to relativity are 
taken into account by the validity regions M r of propositions in Minkowski 
space and by considering the respective domain of information D i of the 
observer's position ~ in space-time. So far Lorentz invariance and Einstein 
causality are incorporated into the relativistic quantum language SRQ" 
However, it is not yet clear, whether this language is consistent in the 
following sense. The history of a system S consists of a sequence of facts, 
which are objective in the sense of quantum physics. It may happen that the 
observer's knowledge of these facts is incomplete and depends on his 
position and his particular Lorentz frame. However, it must be required that 
the descriptions of S, which are given by different observers B, B' , . . .  do not 
contradict each other. It will be shown that this requirement corresponds to 
an additional consistency postulate, the C postulate, which must be imposed 
onto SRQ" 

There is still another possible inconsistency of a more subtle kind 
which one must be prepared for. In the present approach we have presup- 
posed the principle of Einstein causality for all kinds of classical signals. 
However, the M charts of Minkowski space are defined such that nonlocal 
correlations between spacelike points, which are known from the EPR 
thought experiment, are not excluded. Hence it could happen that by means 
of these correlations superluminal signals can be constructed which would 
violate the principle of Einstein causality at least for quantum physical 
signals. Whether the nonlocal EPR correlations really exist is still an open 
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question (d'Espagnat, 1979). However, it can be shown that irrespective of 
the existence of these correlations, signals which violate Einstein causality 
cannot be constructed, provided the above-mentioned consistency postulate 
is fulfilled. 

We consider again the above-mentioned measuring program with mea- 
surement of A and B at spacelike points x* and y*. Let the coordinate 
system Ko(x) be at rest relative to the observer B u, whose position ~ will be 
assumed to be located in D 4. If the realistic history of the system S has an 
absolute meaning, as was discussed above, the change of the Lorentz frame 
of B u by a homogeneous Lorentz transformation should not have any 
influence on this history. If the Lorentz group A is represented in 

/J. 1' Minkowskian space by transformations x ~' --, x ~' = A,x  , we assume that A 
is represented in the language SRQ by a group of automorphisms aA: 
~RQ-*~RQ such that proposition A'=O~A(A ) with AESRQ is the trans- 
formed proposition A. In the algebraic representation of quantum logic this 
group of automorphisms is well known (Gudder, 1971). The generalization 
of these investigations to the present approach seems to be possible. 

Let A", be a Lorentz transformation such that the temporal order 
xc' ~ < y~ is changed into x~' > Yo*'- The history h of S in the region M 3, say, 
is transformed under A into 

h'(M3): (W'mA'k)mB; (8) 

whereas the history of S in the transformed region M~ is given by 

h(M~): (W'~B;)rTA' k (9) 

If the history has the required absolute meaning, the two propositions (8) 
and (9) must be equivalent, i.e., 

Wn(A kmB,) = W n ( B , n  Ak) (10) 

and this for all preparations W and all indices k, l. (We have omitted here 
the prime, since it indicates merely that the propositions are formulated in 
the language r RQ.) 

The equivalence sign " =  " in (10) means value equivalence with 
respect to truth values (Stachow, 1981b). Since the validity of this equiva- 
lence is demanded here for all W, we have 

A k n B l =  B in  A k (11) 

for all k and l. 
The four equivalence relations (11) imply the commensurability of A 

and B. In order to demonstrate this important result, we consider the first 
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A 

- -  A A ~  
Fig. 10. Proof tree for K(A, B). 

two steps of the proof tree for the proposition k(A,  B) (Figure 10). This 
proof tree consists of four successful branches and of four branches without 
success (dotted lines). According to the equivalence (1 1) these branches can 
equivalently be replaced by 

A ~ B ~ - ~ A =  A ~ A ~ B  

A m ~ B R ~ A = A ~ A m ~ B  

~ A m B R A = ~ A R A R B  

- ~ A R ~ B m A = ~ A ~ A N B  

Hence each of these reformulated branches contains A N ~A  or ~A  n A and 
will thus never appear in a proof process. Since this argument can im- 
mediately be iterated to k(A,  B) proof trees of arbitrary length, we find that 
A and B are commensurable, i.e., ~k(A,B) ,  if the equivalence (11) is 
fulfilled. 

Summarizing these investigations we can express the consistency pos- 
tulate for the language SRQ in the following way: 5 

C-postulate. If propositions A and B are provable at points x* and y* 
of 23E with a spacelike distance, then A and B are commensurable. 

In relativistic Hilbert space quantum theory, this C postulate corre- 
sponds to the well-known locality condition (Streater and Wightman, 1964) 
which is generally assumed to be valid in relativistic quantum field theory. 
In the present approach it plays the role of a consistency postulate for the 
relativistic quantum language SRQ. It is important to note that the deriva- 
tion of the C postulate from the consistency requirement for the relativistic 
quantum language has been performed here merely by means of the Q 
language and without any recourse to the Hilbert space quantum theory. 

5Commensurability propositions k(A, B) are defined first of all solely for propositions A, B 
with the same provability region (Section 3). The C postulate gives an extension of this 
definition for provability regions with a spacelike distance, and is thus always compatible with 
the original definition of k(A, B). 
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We can now combine  this C postulate with the L theorem of Section 4. 
In this way we obtain the following result: 

L - C  Theorem. If proposi t ions A and B are provable at points  
x* and y*, respectively, with spacelike distance, then the probabili-  
ties of B with respect to W and W I-7 (A A ~ A) are equal, i.e., 

: p wn A 

This theorem means that the probabil i ty for the outcome B of  a B trial 
at the point  y* with respect to the preparat ion W is the same as the 
probabil i ty with respect to the Ltiders ensemble F(W; A) which is generated 
by an A test at S ( W ) ,  provided the point  x* of  the A trial has spacelike 
distance to y*. Consequent ly  the probabil i ty of  a B test at the point  y* does 
not depend on whether at the spacelike point  x* an A trial has been carried 
out or not. For  this reason it is impossible f rom the point  x* to the spacelike 
point  y* to transmit a superluminal signal, which uses the alternative (A 
test, no A test) and the effect of  which consists in a change of  the B 
probability. 

Since probabilities as well as the language SRQ are related throughout  
this paper  to a single system, a change of  the B probabil i ty could be 
received as a message at a single system S(W) .  6 Hence the impossibility of  
such probabil i ty signals means that the quan tum physical nonlocal  correla- 
tions between spacelike points (if they exist) cannot  be used in order to 
violate the principle of Einstein causality. The above-ment ioned question, 
whether the C postulate also guarantees the validity of Einstein causality at 
the quan tum level, can thus be answered affirmatively. 
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